Concordant gene expression signatures predict clinical outcomes of cancer patients undergoing systemic therapy.
نویسندگان
چکیده
Conventional development of multivariate gene expression models (GEM) predicting therapeutic response of cancer patients is based on analysis of patients treated with specific regimens, which limits generalization to different or novel drug combinations. We overcome this limitation by developing GEMs based on in vitro drug sensitivities and microarray analyses of the NCI-60 cancer cell line panel. These GEMs were evaluated in blind fashion as predictors of tumor response and/or patient survival in seven independent cohorts of patients with breast (n = 275), bladder (n = 59), and ovarian (n= 143) cancer treated with multiagent chemotherapy, of which 233 patients were from prospectively enrolled clinical trials. In all studies, GEMs effectively stratified tumor response and patient survival independent of established clinical and pathologic tumor variables. In bladder cancer patients treated with neoadjuvant methotrexate, vinblastine, Adriamycin (doxorubicin), and cisplatin, the 3-year overall survival for those with favorable GEM scores was 81% versus 33% for those with less favorable scores (P = 0.002). GEMs for breast cancer patients treated with 5-fluorouracil, Adriamycin (doxorubicin), and cyclophosphamide and ovarian cancer patients treated with platinum-containing regimens also stratified patient survival [5-year overall survival 100% versus 74% (P = 0.05) and 3-year overall survival 68% versus 43% (P = 0.008), respectively]. Importantly, clinical prediction using our in vitro GEM was superior to that of conventionally derived GEMs. We show a facile yet effective approach to GEM derivation that identifies patients most likely to benefit from selected multiagent therapy. Use of such in vitro-based GEMs may provide a robust and generalizable approach to personalized cancer therapy.
منابع مشابه
Clinical Research Concordant Gene Expression Signatures Predict Clinical Outcomes of Cancer Patients Undergoing Systemic Therapy
Conventional development of multivariate gene expression models (GEM) predicting therapeutic response of cancer patients is based on analysis of patients treated with specific regimens, which limits generalization to different or novel drug combinations. We overcome this limitation by developing GEMs based on in vitro drug sensitivities and microarray analyses of the NCI-60 cancer cell line pan...
متن کاملAn algorithm to discover gene signatures with predictive potential
BACKGROUND The advent of global gene expression profiling has generated unprecedented insight into our molecular understanding of cancer, including breast cancer. For example, human breast cancer patients display significant diversity in terms of their survival, recurrence, metastasis as well as response to treatment. These patient outcomes can be predicted by the transcriptional programs of th...
متن کاملExploring Gene Expression Signatures for Predicting Disease Free Survival after Resection of Colorectal Cancer Liver Metastases
BACKGROUND AND OBJECTIVES This study was designed to identify and validate gene signatures that can predict disease free survival (DFS) in patients undergoing a radical resection for their colorectal liver metastases (CRLM). METHODS Tumor gene expression profiles were collected from 119 patients undergoing surgery for their CRLM in the Paul Brousse Hospital (France) and the University Medical...
متن کاملMolecular pathways: extracting medical knowledge from high-throughput genomic data.
High-throughput genomic data that measures RNA expression, DNA copy number, mutation status, and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. Although the number of possible lesions is vast, different genomic alterations may result...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 69 21 شماره
صفحات -
تاریخ انتشار 2009